Predicting material failure: Machine learning spots early abnormal grain growth signs for safer designs

A team of Lehigh University researchers has successfully predicted abnormal grain growth in simulated polycrystalline materials for the first time—a development that could lead to the creation of stronger, more reliable materials for high-stress environments, such as combustion engines. A paper describing their novel machine learning method was recently published in Nature Computational Materials.

This post was originally published on this site

Lawyers Lookup Legal Directory - Find a lawyer online using www.lawyerslookup.ca